- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahad, Ali (2)
-
Askar, Ammar (2)
-
Jung, Chijung (2)
-
Kim, Doowon (2)
-
Kim, Taesoo (2)
-
Kwon, Yonghwi (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Decompilation is a crucial capability in forensic analysis, facilitating analysis of unknown binaries. The recent rise of Python malware has brought attention to Python decompilers that aim to obtain source code representation from a Python binary. However, Python decompilers fail to handle various binaries, limiting their capabilities in forensic analysis. This paper proposes a novel solution that transforms a decompilation error-inducing Python binary into a decompilable binary. Our key intuition is that we can resolve the decompilation errors by transforming error-inducing code blocks in the input binary into another form. The core of our approach is the concept of Forensically Equivalent Transformation (FET) which allows non-semantic preserving transformation in the context of forensic analysis. We carefully define the FETs to minimize their undesirable consequences while fixing various error-inducing instructions that are difficult to solve when preserving the exact semantics. We evaluate the prototype of our approach with 17,117 real-world Python malware samples causing decompilation errors in five popular decompilers. It successfully identifies and fixes 77,022 errors. Our approach also handles anti-analysis techniques, including opcode remap- ping, and helps migrate Python 3.9 binaries to 3.8 binaries.more » « less
-
Ahad, Ali; Jung, Chijung; Askar, Ammar; Kim, Doowon; Kim, Taesoo; Kwon, Yonghwi (, 2023 IEEE Symposium on Security and Privacy (SP))
An official website of the United States government
